Rutgers University: Algebra Written Qualifying Exam January 2016: Problem 5 Solution

Exercise. Let G be a group of order 108. Prove that G is not simple.

Solution.

 $|G| = 108 = 2^2 3^3$, so by the third Sylow Theorem, $n_3 \equiv 1 \mod 3$ and $n_3 \mid 4$ $\implies n_3 = 1 \text{ or } 4$ If $n_3 = 1$ then there's one Sylow 3-subgroup, which is normal in G by the 2^{nd} Sylow Theorem. \implies G is not simple. Suppose there are $n_3 = 4$ Sylow 3-subgroups, and let H, K denote distinct Sylow 3-subgroups. Want to show $H \cap K \lhd G$ 1. Find the **order** of $H \cap K$ $|HK| = \frac{|H||K|}{|H \cap K|} \implies |H \cap K| = \frac{|H||K|}{|HK|} \ge \frac{|H||K|}{|G|} \text{ since } |HK| \le |G|$ $= \frac{27 \cdot 27}{27 \cdot 4} = \frac{27}{4} = 6.75$ Moreover, $H \cap K$ is a subgroup of H and K \implies $|H \cap K| \mid |H| = 3^3$ $\implies |H \cap K| = 3 \text{ or } 9$ Since $|H \cap K| \ge 6.75$, we know $|H \cap K| = 9$. 2. Find the **index** of $H \cap K$ to show $H \cap K \triangleleft H$ and $H \cap K \triangleleft K$ $|H| = [H : H \cap K]|H \cap K|$ $27 = [H : H \cap K] \cdot 9$ $[H:H\cap K]=3$ \implies $[K: H \cap K] = 3.$ Similarly, If a subgroup hast the smallest prime index, then it is normal. Since 3 is the smallest prime divisor of 27 = |H| = |K|, $|H \cap K| \triangleleft H$ and $H \cap K \triangleleft K$. 3. Use $N_G(H \cap K) = \{q : q(H \cap K)q^{-1} = H \cap K\}$ to show $H \cap K \triangleleft G$ By part (2), $H, K \subseteq N_G(H \cap K)$, so and $k(H \cap K)k^{-1} = H \cap K, \ \forall k \in K$ $h(H \cap K)h^{-1} = H \cap K, \ \forall h \in H$ $\implies (hk)(H \cap K)(hk)^{-1} = hk(H \cap K)k^{-1}h^{-1}$ $= h(H \cap K)h^{-1}$ $= H \cap K, \ \forall hk \in HK$ Thus, $HK \subseteq N_G(H \cap K)$ $|HK| = \frac{|H||K|}{|H \cap K|} = \frac{27 \cdot 27}{9} = 81$ $N_G(H \cap K)$ is a subgroup of G so $|N_G(H \cap K)| \mid |G|$ $\implies |N_G(H \cap K)| | 27 \cdot 4$ $\implies |N_G(H \cap K)| = 108 = |G|$ since $|N_G(H \cap K)| \ge 81$ Thus, $N_G(H \cap K) = G$ and so $H \cap K \triangleleft G$.